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Abstract 17 

Our understanding and predictive capability of streamflow processes largely rely on high-18 
quality datasets that depict a river’s upstream basin characteristics. Recent proliferation of large 19 
sample hydrology (LSH) datasets has promoted model parameter estimation and data-driven 20 
analyses of the hydrological processes worldwide, yet existing LSH is still insufficient in terms of 21 
sample coverage, uncertainty estimates, and dynamic descriptions of anthropogenic activities. To 22 
bridge the gap, we contribute the Synthesis of Global Streamflow characteristics, Hydrometeorology, 23 
and catchment Attributes (GSHA) to complement existing LSH datasets, which covers 21,568 24 
watersheds from 13 agencies for as long as 43 years based on discharge observations scraped from 25 
web. In addition to annual streamflow indices, each basin’s daily meteorological variables (i.e., 26 
precipitation, 2 m air temperature, longwave/shortwave radiation, wind speed, actual and potential 27 
evapotranspiration), daily-weekly water storage terms (i.e., snow water equivalence, soil moisture, 28 
groundwater percentage), and yearly dynamic descriptors of the land surface characteristics (i.e., 29 
urban/cropland/forest fractions, leaf area index, reservoir storage and degree of regulation) are also 30 
provided by combining openly available remote sensing and reanalysis datasets. The uncertainties 31 
of all meteorological variables are estimated with independent data sources. Our analyses revealed 32 
the following insights: (i) meteorological data uncertainties vary across variables and geographical 33 
regions, and the prominent patterns revealed should be accounted for by LSH users, (ii) ~6% 34 
watersheds shifted between human managed and natural states during the GSHA time span, which 35 
may be useful for analysis that takes the changing land surface characteristics into account, and (iii) 36 
GSHA watersheds observed a more widespread declining trend in runoff coefficient than an 37 
increasing trend, pointing towards critical water availability issues. Overall, GSHA is expected to 38 
serve hydrological model parameter estimation and data-driven analyses as it continues to improve. 39 
GSHA v1.0 can be accessed at https://doi.org/10.5281/zenodo.8090704 (Yin et al., 2023).  40 
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1 Introduction 41 

Climate change has posed profound challenges to the management of freshwater resources, 42 

specifically riverine floods and water shortages (AghaKouchak et al., 2020; Thackeray et al., 2022). 43 

The urgent need for flood and drought forecasting, water resources planning and management, all 44 

call for high-quality streamflow predictions for basins worldwide to analyse global terrestrial water 45 

conditions in a systematic view (Burges, 1998). The scarcity of hydrological observations has 46 

brought challenges to these predictions (Belvederesi et al., 2022; Hrachowitz et al., 2013), thus the 47 

development of computer models that allow for “modelling everything everywhere” (Beven & 48 

Alcock, 2012) constitutes the backbone of hydrological studies. Existing studies have used 49 

physically-based and data-driven models for streamflow simulation (Lin et al., 2018; Nandi & 50 

Reddy, 2022; Zhang et al., 2020), with efforts to improve accuracy of prediction by combining both 51 

(Cho & Kim, 2022; Razavi & Coulibaly, 2013). Yet the prediction of the magnitude, timing, and 52 

trend of critical streamflow characteristics are still subject to multiple sources of errors and 53 

uncertainties (Bourdin et al., 2012; Brunner et al., 2021).  54 

Streamflow (Q) can be represented by the simple water balance equation involving 55 

precipitation (P), evapotranspiration (ET), and water storage terms (S) denoted as Q = P – ET – ΔS, 56 

yet influencing factors of these components could bring uncertainties that will cascade downstream. 57 

Starting from the model assumptions to the data used to represent climate, soil water, ice cover, 58 

topography and land use, as well as to the less well-known processes such as human perturbations 59 

and sub-surface flows (Benke et al., 2008; Wilby & Dessai, 2010), these complications impede our 60 

understanding of streamflow processes across scales, which also limits the modelling and predictive 61 

capability for streamflow. Thus, reducing the predictive uncertainties require high-quality data with 62 

massive samples capable of depicting each of the water balance components, as well as the natural 63 

and anthropogenic factors involved (Gupta et al., 2014). 64 

Efforts have been made to address the need of such kind of high-quality datasets on watershed-65 
scale hydro-climate and environmental conditions during the past couple of decades. One of the 66 
earliest was the most widely used dataset generated for the Model Parameter Estimation Experiment 67 
(MOPEX) project aimed at better hydrological modelling (Duan et al., 2006). Historical hydro-68 
meteorological data and land surface characteristics for over 400 hydrologic basins in the United 69 
States were provided, which was fundamental to the progress in large sample hydrology (LSH) 70 
(Addor et al., 2020; Schaake et al., 2006). Later the dataset was expanded to 671 catchments in the 71 
contiguous United States (CONUS) and benchmarked by model results (Newman et al., 2015). 72 
Based on these studies, the Catchment Attributes and Meteorology for Large-sample Studies 73 
(CAMELS) dataset was developed, providing comprehensive and updated data on topography, 74 
climate, streamflow, land cover, soil, and geology attributes for each catchment (Addor et al., 2017). 75 
The CONUS CAMELS dataset soon became influential in LSH and has since inspired researchers 76 
from Australia (Fowler et al., 2021), Europe (Coxon et al., 2020; Delaigue et al., 2022; Klingler et 77 
al., 2021), South America (Alvarez-Garreton et al., 2018; Chagas et al., 2020), and China (Hao et 78 
al., 2021) to contribute their regional CAMELS. Another comprehensive regional LSH dataset for 79 
North America named the Hydrometeorological Sandbox - École de Technologies Supérieure 80 
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(HYSETS) dataset, is also developed with larger sample size (14425 watersheds) and richer data 81 
sources compared with the CAMELS (Arsenault et al., 2020).  82 

While these datasets provide reliable data sources for regional studies, attempts on building 83 
global datasets has become the new norm in the era of big data to boost our analytical and modelling 84 
capability for the terrestrial hydrological processes. The HydroATLAS dataset integrates indices of 85 
hydrology, physiography, climate, land cover, soil, geology and anthropogenic activity attributes for 86 
8.5 million global river reaches (Lehner et al., 2022; Linke et al., 2019). A recent work combined a 87 
series of CAMELS dataset with HydroATLAS attributes into a new global community dataset on 88 
the cloud named Caravan, with dynamic hydro-climate variables and comprehensive static 89 
catchment attributes extracted on 6830 watersheds (Kratzert et al., 2023), which represents by far 90 
the most comprehensive synthesis of existing CAMELS. Another global-scale effort, the Global 91 
Streamflow Indices and Metadata archive (GSIM), incorporated dynamic streamflow indices and 92 
attribute metadata for topography, climate type, land cover, etc., for over 35000 gauges (Do et al., 93 
2018; Gudmundsson et al., 2018), and the streamflow indices are updated to allow for trend analysis 94 
(Chen et al., 2023). A recent study filled in the discontinuity and latency of gauge records, and 95 
provided streamflow for over 45,000 gauges with improved data quality (Riggs et al., 2023). These 96 
global-scale datasets have been widely used in data driven machine learning models (Kratzert et al., 97 
2019a, 2019b; Ren et al., 2020), physical hydrological models (Aerts et al., 2022; Clark et al., 2021), 98 
and parameter estimation and regionalization studies (Addor et al., 2018; Fang et al., 2022).  99 

Although the flourishment of LSH datasets has promoted comparative hydrological studies 100 
(Kovács, 1984) and large-scale hydrological modeling and analyses, several challenges are still 101 
standing in the way to realize the full potential of LSH. As briefly outlined in a recent review by 102 
Addor et al. (2020), current LSH datasets lack common standards, metadata and uncertainty 103 
estimates, and are insufficient in characterising human interventions. More specifically, the 104 
following major critical aspects still need attentions from the LSH developers, which we attempt to 105 
address with GSHA (Yin et al., 2023). First, the majority of current datasets (especially those at a 106 
global scale) incorporate only one data source for each variable, while earth observations, reanalysis, 107 
satellite-based estimates are subject to uncertainties (Merchant et al., 2017; Ukhurebor et al., 2020). 108 
These uncertainties were rarely represented and may bring difficulties to the regionalization of 109 
model parameters (Beck et al., 2016), while also resulting in inconsistent conclusions. Second, 110 
anthropogenic activities including land use and land cover (LULC) changes, dam and reservoir 111 
building, etc., are critical drivers of shifts in streamflow statistical moments (Niraula et al., 2015). 112 
However, historical time series of watershed human modifications have rarely been included in LSH 113 
datasets, which is particularly problematic for regions with rapid economic growth. Finally, 114 
although the most recent Caravan has provided hydroclimate data for global watersheds, the samples 115 
are limited to the existing regional CAMELS which Caravan synthesizes. Therefore, plenty of room 116 
is left to increase data sample size and spatial coverage by revisiting the streamflow data acquisition 117 
process in a more comprehensive way.  118 

To complement existing LSH datasets, we contribute the first version of a synthesis of Global 119 

Streamflow characteristics, Hydrometeorology, and catchment Attributes (GSHA v_1.0) for large 120 

sample river-centric studies. GSHA features the following characteristics: 121 

l Updated physical and anthropogenic descriptors of global rivers, covering streamflow 122 

characteristics, hydrometeorological variables, and land use land cover changes for 21568 123 

watersheds derived from gauged streamflow records from 13 agencies. 124 

https://doi.org/10.5194/essd-2023-256
Preprint. Discussion started: 10 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Manuscript in submission to ESSD 

4 
 

l Streamflow indices for data scarce regions, including those derived from 263 gauges in 125 

China, are included.  126 

l Extended temporal coverage for as long as 43 years (1979-2021), which varies regionally. 127 

l Uncertainty estimates for the meteorological variables. 128 

l Dynamic descriptors for the urban, forest, and cropland fractions, as well as reservoir 129 

storage capacity to improve the representation of human activities in the basin. 130 

With the above features, we expect GSHA to support hydrological model parameter estimation 131 

and data driven analysis of global streamflow as one of the most comprehensive LSH datasets 132 

regarding sample size, variable dynamics, and uncertainty estimates. Table 1 summarizes the 133 

differences between GSHA and other prominent LSH datasets. Our paper is organized as follows. 134 

Section 2 expands on Table 1 and provide more details of the data included for GSHA. Section 3 135 

introduces the data sources and methodologies involved in creating GSHA. Section 4 highlights the 136 

key features of GSHA by conducting some analyses, followed by conclusions reached in Section 5. 137 

 138 

Table 1 Comparison of GSHA with other LSH datasets. Note that we only include the CONUS 139 
CAMELS dataset to represent regional LSH datasets for this comparison, as other regional CAMELS 140 
share large similarity with CONUS CAMELS. 141 

Factors  CAMELS 

(eg. US) 

HydroATLAS Caravan GSIM GSHA 

Spatial extent Regional  Global  Global  Global  Global  

Sample size 671 8.5 million  6830 35002 21568 

Time span 1980–2015 Static 1981–2020 1806-2016 1979-2021 

Streamflow 

dynamics 

Yes No Yes Yes (statistical 

indices) 

Yes (statistical 

indices) 

Meteorological 

time series 

Yes No Yes No Yes 

Multi data sources 

for meteorological 

variables 

Yes No No No Yes (with 

uncertainty 

estimates) 

Water storage 

dynamics 

No No Only soil 

water 

dynamics 

No  Yes 

Land cover 

dynamics 

No No No  No Yes 

Reservoir 

dynamics 

No No No No Yes  

Static attributes Yes Yes  Yes (from 

HydroATLAS) 

Yes Yes (from 

HydroATLAS) 
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2 Dataset content of GSHA v1 142 

In this section, the data fields, variables, and attributes included in GSHA are described in more 143 

details and summarized in Table 2. For the instructions of the data format, we provided a user 144 

manual along with the dataset (see readme.docx). GSHA includes yearly streamflow characteristics 145 

derived from daily discharge observations, meteorological variables (including precipitation, 2-m 146 

air temperature, long- and shortwave radiation, wind speed, actual and potential evapotranspiration 147 

(AET and PET)), daily or weekly water storage terms (4 layers of soil moisture, groundwater, and 148 

snow depth water equivalence), daily vegetation index (leaf area index (LAI)), yearly LULC 149 

characteristics (urban, cropland, and forest fraction), and yearly reservoir information (degree of 150 

regulation (DOR) and reservoir capacity). For each meteorological variable, multiple independent 151 

data sources are incorporated to provide uncertainty estimates. Static attributes like land 152 

physiography, soils, and geology are not additionally extracted, as similar efforts have been made 153 

by other researchers, so we directly matched our gauge locations to the HydroATLAS dataset 154 

(Lehner et al., 2022; Linke et al., 2019) by providing the river ID match table. Users can link the 155 

two to obtain these attributes. 156 

Watershed polygons: GSHA includes 21568 watershed polygons delineated from the global 157 

gauges, which is stored as Esri Shapefile format. The ID and agency of each watershed is the same 158 

as the corresponding gauge ID, and the gauge latitude/longitude are in decimal degree. The area 159 

denotes the upstream drainage basin area of the gauge. Some of the IDs contain characters (such as 160 

‘.’, ‘-’, etc.) inconsistent with the majority of IDs. For the convenience of the users, we unified these 161 

as underscores and stored the new file names as ‘filename’. 162 

Streamflow indices: GSHA publishes annual streamflow indices derived from daily 163 

streamflow data, including different percentiles, and mean/median/minimum/maximum. The 164 

frequency and durations of extremely high and low streamflow events are also provided, along with 165 

numbers of zero observations and valid samples to allow extreme streamflow analysis and flexible 166 

data screening by the users. The indices are stored as comma separated values (CSV) files by year, 167 

with each watershed corresponding to one file. A complementary R package can be used to 168 

automatically download many of the gauge datasets is available at https://github.com/Ryan-169 

Riggs/RivRetrieve(Riggs et al., 2023). 170 

Meteorological variables: The meteorological variables selected are the most influential 171 

drivers for streamflow, which includes precipitation, 2-m temperature, ET, radiation and wind speed. 172 

In main-stream land surface models, ET is a diagnostic variable derived from meteorological inputs 173 

and is not considered as meteorological forcing. However, as many hydrological models also use 174 

potential ET as an input variable, and model calibration sometimes involves actual ET (Immerzeel 175 

& Droogers, 2008), we include the two variables and place it into the meteorological variable 176 

category. For each variable, more than one data sources are used to allow for uncertainty analysis, 177 

which will be provided on a yearly basis in an independent file.  178 

Natural water storage terms and land use/land cover change: These include soil moisture, 179 
snow water equivalent, and ground water percentages. We also include yearly land cover dynamics 180 
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(i.e., urban, forest, and cropland fraction changes), as well as dynamically changing reservoir 181 
capacity and degree of regulation (DOR) percentage. Leaf area index (LAI) is also included to 182 
reflect the seasonal changes in vegetation canopy that is also key to the streamflow processes. 183 

Static attributes: GSHA does not extract updated static attributes because HydroATLAS 184 

already make substantial efforts in this regard. Instead, the listed categories are those mostly related 185 

to streamflow prediction from HydroATLAS selected to be included in GSHA files, and we direct 186 

the readers to the ID match table to access the entire 281 static attributes offered by HydroATLAS 187 

(Lehner et al., 2022; Linke et al., 2019). Our user manual, available at the dataset download site, 188 

also provides more information on it. 189 

 190 

Table 2 Fields provided with GSHA. 191 

Category Field Description Unit 
Watershed 
Polygons 

Sttn_Nm The ID of the watershed. NaN 
Latitude Latitude of the gauge. Degree 
Longitude Longitude of the gauge. Degree 
Shedarea The area of delineated watershed. Km2 

Agency The agency the gauge belongs to. NaN 
filename The name of the corresponding 

Shapefile in the dataset. 
NaN 

Category Indices Description Unit/Format 
Streamflow 
indices 

percentiles Annual 1, 10, 25, 75, 90, 99 
percentiles of daily streamflow. 

m3/s 

mean Annual mean of daily streamflow. m3/s 
median Annual median of daily streamflow. m3/s 
annual maximum flood 
(AMF) 

Annual maximum of daily 
streamflow. 

m3/s 

AMF occurrence date The date of AMF occurrence. Year/month/day 
frequency of high-flow 
events 

Number of days in a year with 
streamflow >= 90 percentile flow. 

Days/year 

average duration of 
high-flow events 

Average number of consecutive 
days >= 90 percentile flow. 

Days 

frequency of low-flow 
events 

Number of days in a year with 
streamflow <= 10 percentile flow. 

Days/year 

average duration of 
low-flow events 

Average number of consecutive days 
<= 10 percentile flow. 

Days 

Q=0 days Number of days with runoff=0. Days 
valid observation days Number of days with no missing data. 

(Valid observations refer to non-null 
measurements.) 

Days 

Category Variable Data source name Unit 
Meteorological 
Variables 

Precipitation MSWEP mm 
EM-Earth mm 

2 m temperature ERA5 K 
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MERRA-2 K 
EUSTACE K 

Actual 
evapotranspiration 

REA mm 
GLEAM mm 

Potential 
evapotranspiration 

GLEAM mm 
hPET mm 

Radiation (longwave) ERA5 land surface net thermal 
radiation 

W/m2 

 MERRA-2 surface net downward 
longwave flux 

W/m2 

Radiation (shortwave) ERA5 land surface net solar radiation W/m2 
MERRA-2 surface net downward 
shortwave flux 

W/m2 

10 m wind speed (u 
component) 

ERA5 land u-component of wind m/s 
MERRA-2 10 metre eastward wind m/s 

10 m wind speed (v 
component) 

ERA5 land v-component of wind m/s 
MERRA-2 10 metre northward wind m/s 

10 m wind speed  
(actual) 

ERA5 land u- and v-components of 
wind 

m/s 

MERRA-2 10 metre northward and 
eastward wind 

m/s 

Category Variable Data source name Unit 
Water storage 
terms 

Soil moisture layer 1 ERA5 land soil water layer 1 
(0-7 cm, 0cm refers to the surface) 

m3/m3 

Soil moisture layer 2 ERA5 land soil water layer 2 (7-28 
cm) 

m3/m3 

Soil moisture layer 3 ERA5 land soil water layer 3 (28-100 
cm) 

m3/m3 

Soil moisture layer 4 ERA5 land soil water layer 4 (100-
289 cm) 

m3/m3 

Snow water equivalent ERA5 land snow depth water 
equivalent 

m of water 
equivalent 

Ground water GRACE-FO data assimilation % 
Category Variable Data source name Unit 
Land use and 
land cover 

Urban fraction GAUD % 
Forest fraction MCD12Q1 % 
Cropland fraction MCD12Q1 % 
Reservoir capacity GeoDAR Million m3 
DOR GeoDAR % 
LAI CDR LAI NaN 

Category Attribute Column name Unit  
Static-
Physiography 

Elevation ele_mt_uav m. a.s.l. 
Terrain slope slp_dg_uav degrees (x10) 
Stream gradient sgr_dk_rav decimetres per 
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km 
Static-
Hydrology  

Inundation Extent inu_pc_ult % 
Groundwater Table 
Depth 

gwt_cm_cav cm 

Static-
Landcover 

Land Cover Classes glc_cl_cmj NaN 
Potential Natural 
Vegetation Classes 

pnv_cl_cmj NaN 

Wetland Extent wet_pc_u01-u09 % 
Glacier Extent gla_pc_use % 
Permafrost Extent prm_pc_use % 

Static-Soil & 
geology 

Clay Fraction in Soil cly_pc_uav % 
Silt Fraction in Soil slt_pc_uav % 
Sand Fraction in Soil snd_pc_uav % 
Lithological Classes lit_cl_cmj NaN 
Soil Erosion ero_kh_uav kg/hectare per 

year 

3 Data sources and methodology 192 

3.1 Technical workflow in creating GSHA 193 

The creation of GSHA starts from revisiting the data compilation process for the stream 194 

gauging observations from 13 international agencies. The general workflow of GSHA data 195 

production processes is illustrated in Figure 1, which consists of watershed delineation, variable 196 

extraction from both grid and non-grid data sources, and uncertainty analysis.  197 

First, we delineated the upstream watersheds using gauge locations. Calibration of gauge 198 
longitudes and latitudes were conducted to match the gauges with the MERIT river network exactly. 199 
The delineated watersheds were selected and manually checked using standards of area, topology 200 
correctness, and observation data lengths. The selected watersheds went on to be overlayed with 201 
grid and non-grid variable data sources for to obtain GSHA variables. 202 
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 203 
Figure 1 General workflow of GSHA. The yellow parallelograms are the input datasets, the blue ones 204 

are the final outputs of GSHA dataset, and the pink ones are the results in the process. The black 205 
quadrilaterals represent the extraction and calculation processes, and the red dotted rectangles illustrate 206 

different modules of the extraction process. 207 

3.2 Gauge-based streamflow indices 208 

As shown in Table 3, in total 36497 gauges were initially scraped from web and from the 209 
Chinese National Real-time Rain and Water Situation Database including the real-time water level 210 
and streamflow data of the hydrological stations. For gauges located within ~100-m of each other, 211 
those with shorter record lengths are removed, assuming that they are redundant with one another. 212 
The gauge measurements were converted to a consistent unit (m3/s) and were then manually 213 
compared with GRDC measurements to ensure accurate unit conversion (Riggs et al., 2023). Gauge 214 
databases compiled in this study are available through a variety of web interfaces, except for the 215 
CHP data which is provided by the authors of the dataset (Henck et al 2010, Schmidt et al 2011), 216 
and processed into annual scale data that meets the requirements of the synthesis dataset.  217 
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Chinese N
ational Real-tim

e Rain and W
ater Situation D

atabase  

U
.S. G

eological Survey 2022 (U
SG

S)  

Thailand Royal Irrigation D
epartm

ent 2022 (RID
) 

Spain A
nnuario de A

foros, 2022 (A
FD

) 

Japanese W
ater Inform

ation System
 2022 (M

LIT) 

India W
ater Resources Inform

ation System
 2022 (IW

RIS) 

The G
lobal Runoff D

ata Centre 2022 (G
RD

C) 

Chinese H
ydrology Project (CH

P) 

Chile Center for Clim
ate and Resilience Research 2022(CCRR) 

Canada N
ational W

ater D
ata A

rchive 2022 (H
Y

D
AT)  

Brazil N
ational W

ater A
gency 2022 (A

N
A

) 

A
ustralian Bureau of M

eteorology 2022 (BO
M

) 

A
rcticN

ET 2022 

Source  

Table 3 G
auge data sources used in this analysis. N

1 and N
2 refers to num

bers of gauges w
ith observations after 1979 and used in G

SH
A

.  The starting and ending years  (Y
1 and Y

2) of 

G
S H

A gauges for each agency are listed. 

527 

16951  

126  

1138 

1023  

547 

6345 

112 

481  

3771 

1343  

4017  

116  

N
1 

263  

9069  

73  

889  

751  

261  

4004  

26 

392 

2222 

1172  

2340 

106  

N
2 

2000  

1979  

1980  

1979  

1979  

1979 

1979 

1979  

1979 

1979  

1979 

1979 

1979 

Y
1 

2019  

2021  

1999  

2018  

2019  

2020  

2021  

1987  

2020  

2021  

2021  

2021 

2003  

Y
2 

http://xxfb.m
w

r.cn/sq_zdysq.htm
l 

https://w
aterdata.usgs.gov/nw

is/rt 

http://hydro.iis.u -tokyo.acjp/G
A

M
E -T/G

A
IN

-T/routine/rid-

river/disc_d.htm
l  

http://datos.gob.es/es/catalogo/e00125801-anuario- de-

aforos/resource/4836b826 -e7fd -4a41 -950c -89b4eaea0279  

w
w

w
1.river.go.jp/  

https://indiaw
ris.gov.in/w

ris/#/RiverM
onitoring  

(https://p ortal.grdc.bafg.de/applications/public.htm
l?publicuser=PublicU

ser  

(H
enck et al 2010, Schm

idt et al 2011)  

https://explorador.cr2.cl/  

w
w

w.canada.ca/en/environm
ent -clim

ate -change/services/w
ater-

overview
/quantity/m

onitoring/survey/data - products- services/national-

archive -hydat.htm
l 

w
w

w.snirh.gov.br/hidrow
eb/serieshistoricas  

w
w

w.bom
.gov.au/w

aterdata/  

w
w

w.r -arcticnet.sr.unh.edu/v4.0/A
llD

ata/index.htm
l  

U
R

L /Provider  
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3.2 Watershed delineation 218 

The watershed delineation process is built upon a vector-based global river network dataset 219 
(Lin et al., 2021), which is delineated from the 90-m Multi-Error-Removed Improved Terrain 220 
(MERIT) digital elevation model (DEM) (Yamazaki et al., 2017) and the flow direction and flow 221 
accumulation rasters (Yamazaki et al., 2019). The locations of the gauges may contain locational 222 
errors and direct delineation will result into erroneous watershed boundaries; therefore, gauge 223 
location correction was conducted by relocating the gauges to the nearest MERIT-based river reach 224 
vertices. The adjusted gauge points are used as the watershed outlets, where the contributing areas 225 
are extracted by dissolving all upstream catchments based on the topology provided by MERIT 226 
Basins (Lin et al., 2019). Since the area threshold of MERIT Basins is 25 km2, we do not include 227 
watersheds smaller than this threshold. Considering the spatial heterogeneity of very large basins, 228 
we excluded watersheds ≥50,000 km2 from the dataset. To ensure GSHA to support studies with 229 
sufficiently long records, only watersheds with >5 years of observations since 1979 were selected. 230 
For gauges sharing the same watershed, the one with better data quality (i.e., longer measurement 231 
records and more valid observation days) is used. If the two gauges share the same quality, we only 232 
included the furthest downstream gauge. Eventually, the selection processes resulted in 21568 valid 233 
watersheds out of 35970 gauges initially scraped from web plus 527 gauges from the Chinese 234 
National Real-time Rain and Water Situation Database (Figure 2). 235 

 236 
Figure 2 Spatial distribution of the GSHA gauges (n=21568). Watershed areas are represented by the 237 
tint of colours. Gauges of different agencies are represented with separate colours and are plotted in 238 
individual frames (except for USGS gauges in two frames to incorporate Alaska). The agency names and 239 
the upper-left coordinates (longitude, latitude) of each frame are also shown in the figure. 240 
 241 

The GSHA watersheds are unevenly distributed across the globe, more than half of which are 242 

located in North America (USGS, HYDAT and a large proportion of GRDC gauges, Figure 3a). 243 
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Europe, Australia and South America also have a relatively good coverage, while Asia and Africa 244 

show the lowest gauge densities. The majority of the gauged watersheds are of medium sizes ranging 245 

from 250 to 2500 km2, although for some agencies it does not show the same distribution (Figure 246 

3d). For instance, ANA (South America), IWRIS (India) and arcticnet (Northern Eurasia) 247 

watersheds are generally larger, while the Chinese National Real-time Rain and Water Situation 248 

Database provides more gauges with smaller drainage areas. Due to the maintenance difficulties, 249 

the numbers of functioning gauges are declining for agencies like GRDC, but the lack of data in 250 

recent years (Figure 3c) are mainly due to latency issues. USGS, BOM and ANA provide a stable 251 

number of observations for the 1980-2021 period (Figure 3c) with high proportions of valid 252 

observations each year (Figure 3b), while observational periods from arcticnet and China contain 253 

relatively fewer valid samples (Figure 3b) and shorter time spans (Figure 3c). 254 

 255 
Figure 3 Summary statistics of the GSHA gauges. This includes (a) proportions of gauges from 256 

different agencies, (b) box plots for proportions of valid observations for each agency, (c) proportion of 257 
valid observation for each year by agency and (d) distributions of watershed areas for each agency 258 

(kernel density estimation lines, left y-axis) and all gauges (blue histogram, right y-axis). The colour 259 
legend in subplot (a) applies to all four subplots. In subfigure (a) the 0.11% label corresponds to CHP, 260 
and the legend goes counter clockwise in the pie chart. In subfigure (c), CHP bars are at the bottom of 261 

the plot, and the legend goes from bottom to the top of the bars. 262 

3.3 Meteorological variables, water storage terms, and land surface characteristics 263 

After watershed delineation, publicly available grid or non-grid data were obtained and 264 
overlaid to derive the meteorological, water storage terms, and land surface characteristics. The data 265 
sources used for GSHA are listed in Table 4. We prioritized the use of multi-source fusion datasets 266 
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with relatively high quality surveyed from literature when creating GSHA.  267 

3.3.1 Meteorology datasets 268 

For precipitation, the Multi-Source Weighted-Ensemble Precipitation (MSWEP) that have 269 
merged gauge (CPC Unified), grid (GPCC), satellite (CMORPH, GSMaP-MVK, and TMPA 270 
3B42RT), and reanalysis data (ERA-Interim and JRA-55) with sample density and comparative 271 
performance considered (Beck et al., 2017; Beck et al., 2019) is used. Another recent precipitation 272 
dataset is the Ensemble Meteorological Dataset for Planet Earth (EM-Earth) deterministic estimates, 273 
which merges a station-based Serially Complete Earth (SC-Earth) removing the temporal 274 
discontinuities in raw station observations and ERA5 estimates (Tang et al., 2022). The EUSTACE 275 
global land station daily air temperature dataset (EUSTACE) statistically merged station and 276 
satellite observations to obtain global daily near‐surface air temperature (Brugnara et al., 2019), and 277 
is used as a source for 2-m temperature in GSHA. Other datasets used for 2-m temperature extraction 278 
are the reanalysis datasets Modern-Era Retrospective analysis for Research and Applications 279 
Version 2 (MERRA-2) (Gelaro et al., 2017) by NASA’s Global Modelling and Assimilation Office 280 
(GMAO) and the land components of the European Centre for Medium-Range Weather Forecasts 281 
(ECMWF) fifth generation of European Reanalysis (ERA5) dataset (Muñoz-Sabater et al., 2021). 282 
These reanalysis datasets are also used in extracting long- and shortwave radiation, as well as u- and 283 
v-components of wind. MERRA-2 uses the Goddard Earth Observing System (GEOS) model and 284 
analysis scheme, and assimilated the latest observations. The land surface model used in ERA5 285 
reanalysis is the Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land 286 
(CHTESSEL) driven by the downscaled meteorological forcing from the ERA5 climate reanalysis 287 
(Hersbach et al., 2020). For AET, the dataset merging ERA5, Global Land Data Assimilation System 288 
Version 2 (GLDAS2), and MERRA-2 using the reliability ensemble averaging (REA) method is 289 
used (Lu et al., 2021), together with the product of Global Land Evaporation Amsterdam Model 290 
(GLEAM) based on satellite observations of surface net radiation and near-surface air temperature 291 
(Martens et al., 2017). For PET, GLEAM is also incorporated. Another PET dataset for GSHA is 292 
the hourly PET at 0.1° resolution for the global land surface from 1981-present (hPET) dataset 293 
calculated from ERA5-land wind speed, air and dew point temperature, net radiation components 294 
and surface air pressure (Singer et al., 2021). 295 

3.3.2 Water storage term datasets 296 

ERA5-land data was also applied in extracting soil moisture for 4 soil layers, as well as snow 297 
water equivalence. For groundwater, an assimilation dataset from the NASA's Gravity Recovery 298 
and Climate Experiment (GRACE) and its follow-on mission (GRACE-FO) is used (Li et al., 2019). 299 
The dataset merged water storage derived from GRACE satellite products into ECMWF Integrated 300 
Forecasting System meteorological data-forced NASA's Catchment land surface model (CLSM). 301 
The data is represented as groundwater drought indicator (GWI), which is the percentage of 302 
groundwater storage estimates from the GRACE data assimilation relative to the climatology 303 
(representing historical conditions), at weekly time scales from 2003-2021. 304 
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3.3.3 Land surface characteristic datasets 305 

Global urban development for 1985-2015 is represented as the urban fraction in each watershed 306 
using the global annual urban dynamics (GAUD) at 30-m resolution. The dataset was derived from 307 
Landsat surface reflectance based on the Normalized Urban Areas Composite Index (NUACI) (Liu 308 
et al., 2020). For forest and cropland fractions, the Terra and Aqua combined Moderate Resolution 309 
Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) land cover dataset, was used 310 
(Friedl et al., 2010). It covers 2001-2020 with a resolution of 500 m, and the categories used for 311 
GSHA is the International Geosphere–Biosphere Programme classification (IGBP) forests and 312 
croplands. Another land cover is vegetation, which is represented by LAI obtained from the National 313 
Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) of Advanced Very 314 
High-Resolution Radiometer (AVHRR) product, which relies on artificial neural networks and 315 
AVH09C1 surface reflectance product (Claverie et al., 2016). 316 

3.3.4 Dams and reservoirs 317 

The newly published Georeferenced global Dams And Reservoirs (GeoDAR) dataset that 318 
documents the dam and reservoir construction years is used for building the temporally varying 319 
watershed reservoir capacity and DOR. GeoDAR georeferenced the International Commission on 320 
Large Dams (ICOLD) World Register of Dams (WRD), and geo-matched multi-source regional 321 
registers and geocoding descriptive attributes through the Google Maps API (Wang et al., 2022). 322 
The reservoir capacities are used together with the mean annual streamflow to obtain the DOR based 323 
on the equation 𝑑𝑜𝑟 = 𝑆𝐶/𝑄!"#$, where 𝑆𝐶 refers to reservoir storage capacity and 𝑄!"#$ is 324 
the mean annual streamflow in the corresponding year. 325 

3.3.5 Static variables 326 

We matched GSHA river IDs and HydroATLAS river reach IDs to link the static attributes. 327 
HydroATLAS includes 56 variables for hydrology, physiography, climate, land cover & use, soils 328 
& geology, and anthropogenic influences for over 8.5 million river reaches globally. 329 

 330 
Table 4 Data sources used for the GSHA variables. 331 

Category Dataset Resolution Interval Reference 
Meteorology MSWEP 0.25° Daily (Beck et al., 2017; Beck et al., 

2019) 
EM-Earth 0.1° Daily (Tang et al., 2022) 
ERA5-land 0.1° Hourly (Muñoz-Sabater, 2019) 
MERRA-2 0.5°* 0.625° Hourly (GMAO, 2015) 
EUSTACE 0.25° Daily (Brugnara et al., 2019) 
REA 0.25° Daily (Lu et al., 2021) 
GLEAM 0.25° Daily (Martens et al., 2017; 

Miralles et al., 2011) 
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hPET 0.1° Daily (Singer et al., 2021) 

Water 
storage terms 

ERA5-land 0.1° Hourly (Muñoz-Sabater, 2019) 
GRACE-FO 
data assimilation 

0.25° Weekly (Li et al., 2019; Zaitchik et 
al., 2008) 

Land surface GAUD 30 m Yearly  (Huang, 2020) 
MCD12Q1 500 m Yearly  (Friedl et al., 2019) 
CDR Leaf Area 
Index 

0.05° Daily  (Vermote et al., 2019) 

Dam and 
reservoir 

GeoDAR NaN 
(polygon) 

Yearly (Wang et al., 2022) 

Static 
Attributes 

HydroATLAS NaN (line) NaN (static) (Lehner et al., 2022; Linke et 
al., 2019) 

3.4 Variable extraction methods 332 

For grid data with relatively coarse spatial resolutions (≥0.05°), we used an area-weighted 333 
approach to calculate the weighted average of the variable, while for high-resolution grid data, we 334 
extract the arithmetic mean directly. Figure 4 shows the area-weighted average approach we used 335 
for grid data with spatial resolution ≥0.05° to reduce the influence of watershed area on data 336 
uncertainty (Tang et al., 2022). The grid data (4a) and the quality-controlled watersheds (4b) are 337 
overlayed and all grids intersecting with the watershed are obtained (4c). For each intersected grid, 338 
the proportion of the polygon in the grid is calculated as the weight (dark blue, 4d); the product of 339 
the weight and the corresponding grid value is calculated over all intersected grids (4e) and are 340 
summed up as the weighted average (4f). For wind, the u- and v-wind components are first used to 341 
calculate wind speed, then the basin average is calculated with the weighted average approach. For 342 
grid data with a spatial resolution of <0.05°, the area-weighted approach is not adopted as it offers 343 
limited gains while becoming computationally too expensive. For reservoirs, they are spatially 344 
joined to GSHA watershed polygons, and all the intersected reservoirs were used to calculate the 345 
total reservoir storage capacity and degree of regulation.  346 
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 347 
Figure 4 Determination of the area weights in extracting gridded data to GSHA watershed 348 

polygons. This weighted approach is applied to data at a resolution of ≥0.05° but not for data at a finer 349 
spatial resolution due to computational costs. 350 

3.5 Uncertainty estimates 351 

For meteorological variables, uncertainty estimates are calculated using Eq. (1): 352 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = %!"#&%!$%
%'

∗ 100%,      (1) 353 

where 𝑋!#( and 𝑋!)$ are the maximum and minimum among the extracted values from the 354 
independent data sources. 𝑋6 is the mean of values from all datasets. The uncertainty ranges from 355 
0 to 200%. Note that for some of our data sources such as EC-Earth, uncertainty estimates are 356 
intrinsically provided, but here we do not include it into GSHA as we consider the uncertainty 357 
estimates made from independent data sources more internally consistent among different variables.  358 

3.6 Validation 359 

Postprocessing of the extracted variables include the unification of units and manual quality 360 
checks. For streamflow characteristics, we validated three of our indices against GSIM for its global 361 
coverage, including the mean annual streamflow, 10-th and 90-th percentiles. The spatial joint 362 
between GSHA and GSIM gauges in a 10 km buffer zone was performed, and only the GSIM gauge 363 
with a minimum distance and watershed area difference ≤5% to a GSHA gauge is considered. Pairs 364 
with 0 measurements were excluded and 9835 pairs were involved eventually. We plotted the scatter 365 
plot of GSHA-GSIM mean flow, 10-th and 90-th percentiles, and compared the fitting line to the 1:1 366 
line, with correlation coefficients calculated (see Section 4.1). 367 

We also validated precipitation, potential ET and 2 m air temperature with the regional 368 
CAMELS-US dataset. We compare the Daymet meteorological variables of CAMELS and the mean 369 
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of GSHA variables for the validation. Since we include ERA5 data for most of our variables directly 370 
or indirectly as the data source, while Caravan consistently used ERA5, we did not use Caravan for 371 
the global validation as it is not considered as fully independent from GSHA. The spatial match is 372 
the same we did for GSIM which resulted in 906 pairs. This number is larger than the total CAMELS 373 
gauge numbers as some gauges might be repeatedly paired due to location bias of the USGS gauges 374 
and MERIT river networks, as well as the adjacency between gauges of different agencies. Similarly, 375 
scatter plots and correlation coefficients are provided for assessment. 376 

3.7 Watershed classification and change detection 377 

We classified the watersheds as natural and human managed to analyse the influence of human 378 

water management. A watershed is classified as a natural watershed if it satisfies the following: (1) 379 

DOR is smaller than 10%; (2) the urban extent is less than 5%; and (3) the sum of urban and cropland 380 

fractions is smaller than 10% (L. Yang et al., 2021; Zhang et al., 2023). The classification was 381 

performed for 2001-2015, and the changing patterns of the watersheds are divided into six categories: 382 

(1) natural (N) when the watershed remained natural for all 15 years; (2) human managed (H) when 383 

the watershed remained human managed for all 15 years; (3) natural to human managed (NH) when 384 

the watershed was first natural in 2001, but changed to and maintained human managed later; and 385 

(4) human managed to natural (HN) when the watershed was first human managed in 2001, but 386 

changed to and maintained natural later.  387 

4 Results 388 

As previous studies have already revealed the spatial patterns of the LSH hydrometeorological 389 
variables both locally and globally, therefore here we put the spatial patterns of GSHA 390 
meteorological variables and streamflow indices in Appendix A, while we focus on using the 391 
Results section to reveal the uniqueness of GSHA, which includes a technical validation of GSHA, 392 
uncertainty analysis, and the temporal change of watershed human management levels. 393 

4.1 Technical validation 394 

Figure 5 illustrates the validation results of GSHA. Figures 5a–5c show streamflow indices 395 
as validated against GSIM globally, and Figures 5d–5f show meteorological variable as validated 396 
against Daymet from CONUS CAMELS. For streamflow indices, precipitation, and temperature, 397 
the correlation coefficients exceed 0.95 (significance p<0.01), and the fitting lines are close to 1:1 398 
line, indicating high consistencies between GSHA and the reference datasets. For PET, however, the 399 
coefficient is low, at only 0.573 (significance p<0.05), and the CAMELS PET is generally higher 400 
than GSHA ensemble, which is possibly ascribed to the high uncertainty among PET datasets that 401 
is yet to be fully resolved (Singer et al., 2021) (see Appendix B).  402 
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 403 
Figure 5 Validation of GSHA with GSIM streamflow characteristics ((a), (b) and (c)), and 404 
CAMELS meteorological variables ((d), (e) and (f)). ‘Corr’ in the subfigure is the Pearson correlation 405 
coefficient. The red line is the 1:1 line, while the orange dotted line is the fitting line of the scatter points. 406 
The colour bar represents density of the sample points. 407 

4.2 Uncertainty patterns for the GSHA meteorological variables 408 

Figure 6 shows the distributions of the uncertainties for different variables, and the colour bars 409 
are unified to allow for comparisons between different variables.  410 
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 411 

Figure 6 Global patterns of the uncertainty for the GSHA meteorological variables (in percentage). 412 
This includes the uncertainty (a) for precipitation (mm/day), (b) 2-m temperature (K), (c) longwave 413 
radiation (W/m2), (d) shortwave radiation (W/m2), (e) evapotranspiration (mm/day), and (f) wind speed 414 
(m/s), and (g) the uncertainty histogram for precipitation, (h) 2-m temperature, (i) longwave radiation, 415 
(j) shortwave radiation, (k) evapotranspiration, and (l) wind speed.  416 

 417 

Generally, among all variables, air temperature (Figures 6b & 6h) shows the minimum 418 

uncertainty (<5%), while the uncertainty for wind speed (Figure 6f) is the highest among all 419 

variables. Uncertainties for other variables show strong spatial variability. For example, 420 

uncertainties for precipitation are high in high-latitude or mountainous areas like Rocky Mountains, 421 

northern Europe, the Alps and the Andes areas (Figure 6a). This is reasonable because limited 422 

accessibility to in-situ observations and the misestimation of snow (Schreiner‐McGraw & Ajami, 423 

2020) can contribute to the precipitation estimation errors, while the data sources show relatively 424 
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high consistency (𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ≤25%) in other parts of the world (Figure 6g). For radiation, as 425 

solar/shortwave radiation is largely affected by sky conditions, thus uncertainties are high in regions 426 

with less clear sky, including south-west China and its surrounding areas, high latitude regions of 427 

the northern hemisphere, and Europe (Brun et al., 2022). These places are also subject to high 428 

thermal/longwave radiation uncertainties for similar reasons (Figure 6c). Land cover including 429 

vegetation and artificial surface, is another factor influencing surface net radiation through albedo 430 

effect (Hu et al., 2017), thus for heavily vegetated and urbanized areas, such as the Amazon region 431 

and east coastal Australia, uncertainties for both longwave and shortwave fluxes are also relatively 432 

high. Nevertheless, Figures 6i & 6j demonstrate that for the majority of watersheds, radiation 433 

uncertainties are < 25%, indicating that the radiation data sources are generally consistent to each 434 

other. ET uncertainties are generally larger than the above variables (Figures 6e & 6k), and are 435 

particularly prominent in dry areas of the globe, e.g., central North America, northern Andes, central 436 

Asia, and Australia’s grasslands and deserts. It is also prominent in agriculture intensive regions like 437 

India and northern part of China (Sörensson & Ruscica, 2018), where the agricultural irrigation may 438 

be the contributing factor to the ET uncertainty. The spatial distributions of wind speed do not seem 439 

to show clear regional patterns (Figure 6f), and uncertainty values of wind speed are generally 440 

larger over majority of watersheds (Figure 6l). Nevertheless, the uncertainties are low in the 441 

Appalachia and northern Europe, and are high in most parts of Brazil, the Andes, Africa, eastern 442 

and southern parts of Asia, as well as Australia (Figure 6f). As we already selected relatively high-443 

quality datasets for the variables, these areas might be calling for more attention by the LSH 444 

developers, while providing possible explanations for the inconsistencies in interpreting results or 445 

understanding the challenges in estimating model parameters by the LSH users. 446 

 447 
Figure 7 Relationship between variable uncertainties and watershed areas. The markers indicate 448 
mean values of the variable uncertainties in watersheds smaller than the corresponding x-axis value. The 449 
error bars represent the range between 25 and 75 percentiles of the uncertainty values. 450 
 451 
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Apart from the spatial characteristics above, we also investigate the emergent patterns of the 452 
uncertainties. Existing studies indicate small basins can show larger uncertainties due to coarse resolution 453 
data inputs (Kauffeldt et al., 2013), while sub-grid variabilities might be offset by averaging over large 454 
watersheds. Therefore, we plotted the uncertainty against watershed areas in Figure 7, which verifies 455 
that for most variables, the uncertainty declines as the watershed area increases. In addition to the general 456 
understanding, Figure 7 also reveals some interesting patterns. The most obvious decline comes from 457 
ET (green) and longwave radiation (red), both of which are highly dependent on the land surface 458 
conditions and are significantly affected by land surface spatial heterogeneity, thus benefiting the most 459 
from spatial averaging for large river basins. Shortwave radiation and precipitation uncertainty show a 460 
similar decline pattern (blue and purple), which is possibly related to their strong ties to cloud covers. 461 
Temperature has a low uncertainty, and its relationship to watershed area is also not obvious. Wind speed 462 
uncertainty only declines slightly as area increases, and we believe this is because wind speed uncertainty 463 
can be traced back more to the atmospheric circulation patterns instead of the land surface conditions, 464 
thus showing non-prominent relationship with watershed area. Overall, GSHA provides uncertainty 465 
estimates that capture these prominent patterns, which can be helpful to hydrologic modellers and users. 466 

4.3 Natural and human managed watersheds and changing patterns 467 

We also demonstrate the other key features of GSHA by categorizing global watersheds into 468 
natural and human managed, and more prominently their temporal shifts in Figure 8. Overall, 469 
majority of human managed watersheds locates in the US, Europe, and other regions with intensive 470 
industrial or agricultural activities such as East and South Asia (Figures 8a and 8b). During 2001-471 
2015, 46.89% watersheds remained natural, while another 47.62% under human management in 472 
2001 remained in the category throughout the study period (Figure 8d). Generally, northern 473 
hemisphere has a larger proportion of human managed watersheds, while watersheds in the less 474 
populated and urbanized southern hemisphere largely remain natural.  475 

Noticeably, 4.36% of GSHA watersheds switched from natural to human managed (1011 476 
watersheds), and the remaining 1.13% changed backed to natural states from human managed. For 477 
instance, watersheds in the middle and lower Yangtze River area in China show a shift from human 478 
managed to natural state, where environmental projects for ecological restoration were in place (Qu 479 
et al., 2018; Zhang et al., 2015). Although the time span of GSHA LULC dynamics restricted the 480 
change detection for developed regions as their urbanizations and infrastructure developments have 481 
long been completed, and for fast emerging economies after 2015, the time series are also missing; 482 
nevertheless, the changing human activities captured by GSHA may be helpful to understand the 483 
streamflow changes including flood characteristics (Long Yang et al., 2021; Zhang et al., 2022).  484 
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 485 

Figure 8 Classification of natural and human managed watersheds in 2001 (a) and 2015 (b). 486 
Changes in watershed categories are illustrated by (c) and (d). H and N in (c) and (d) represent 487 

watersheds that maintained human managed or natural from 2001-2015; NH and HN represent those 488 
changing from natural to human managed and from human managed to natural, respectively. 489 

 490 

We further use several examples to illustrate the changing status of GSHA watersheds (Figure 491 

9). Figures 9a and 9b show a watershed located in Northeastern China, where the rapid increase in 492 

cropland shifted the watershed from natural states to human managed in recent years. Figures 9c 493 

and 9d correspond to a mountainous area in Sichuan Province, China, which became human 494 

managed due to the construction of a reservoir in 2006. For another case in Northeastern China 495 

(Figures 9e and 9f) and a USGS case (Figures 9g and 9h), the watersheds shifted from human 496 

managed to natural, which is mainly manifested by the reduction in cropland fraction due to the 497 

environmental policy. For instance, afforestation during 2000-2010 in Changbai Mountains where 498 

the watershed in Figures 9e and 9f is located, significantly increased the forest cover and might 499 

bring a decline in human disturbance in the form of land use (Zhang & Liang, 2014). These results 500 

highlight the shifting watershed status that would require further attention from LSH users, which 501 

is encapsulated in GSHA v1.0 and will be continuously improved in the future. 502 
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  503 
Figure 9 Cases for shifting status of the watershed classification. (a) and (b) correspond to 504 

11420270_China, and (c) and (d) correspond to 60532350_China, both of which changed from natural 505 
to human managed category. (e) and (f) represent11605400_China, and (g) and (h) correspond to 506 

06332515_USGS watershed changing from human managed to natural watershed. 507 

4.4 Changing runoff coefficient patterns derived from GSHA 508 

Finally, we also analysed the spatial pattern and trend of global runoff coefficient (RC), as a 509 
brief demonstration of what GSHA can offer out of its many potential usages. RC is defined as 𝑅/𝑃, 510 
where R denotes runoff (mm) and P denotes precipitation (mm) in the corresponding period. Figure 511 
10a shows that, regions where a large proportion of rainfall goes into rivers instead of being 512 
evaporated or consumed (i.e., high RC) are in east Asia and North America, most parts of Europe, 513 
west coast of North America and the Amazon, in general agreement with the aridity patterns across 514 
the globe. For arid/semiarid areas and places with intense water use (e.g., western US, eastern Brazil, 515 
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Australia, Africa), RC is low, meaning most of the precipitation does not reach the gauged river. 516 

Interestingly, we show the RC trend for the past decades. We found that RC generally remained 517 

stable in most parts of the world (i.e., grey dots, Figure 10b), where >80% of the gauges do not 518 

show statistically significant trend (p>0.05). In total, 4252 watersheds demonstrate a 95% 519 

significant trend in RC (5690 watersheds at a 90% significance level), and among them decreasing 520 

RC is more widespread compared to increasing RC. The most pronounced RC decreasing trends are 521 

observed in Europe, India, eastern Brazil, Chile, eastern Australia, and the Euphrates and Tigris, 522 

which largely correspond to regions with known increasing agricultural, industrial, and residential 523 

water use that may have reduced the river water. We also found that the global RC trend patterns 524 

are different from a recent study showing mostly increasing RC in high-latitude watersheds, central 525 

North America, eastern Australia, and Europe, which can largely be explained by the ET changes 526 

(Xiong et al., 2022). Here GSHA reveals that RC trend is decreasing more widely than the increasing 527 

trend, which may be concerning for the water availability in a changing climate, and will warrant 528 

more future research along this line. 529 

 530 

Figure 10 Patterns of runoff coefficient (a) and its trend (b). Only watersheds with statistically 531 
significant trend (p<0.05) are shown with colours in (b); the small and large sized points represent 95% 532 
(p<0.05) and 90% significance level (p<0.1), respectively. Note that the temporal coverage is different 533 
for different gauges; readers can refer to the GSHA temporal coverage for interpreting the patterns. The 534 
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figure illustrates 18987 GSHA watersheds. Watersheds with less than 10 years of indices calculated 535 
from over 250 valid observations per year, as well as with runoff coefficient trend over 20 per decade, 536 

are not demonstrated in subfigure b. 537 

5 Conclusions 538 

Large sample hydrology (LSH) datasets play a critical role in data-driven analyses and model 539 

parameter estimation for hydrological studies. From MOPEX (Duan et al., 2006) to Caravan 540 

(Kratzert et al., 2023), significant efforts have been made to improve the comprehensiveness of LSH, 541 

yet issues related to uncertainty estimates, and the human activity dynamics and the data spatial 542 

coverage remain to be solved. This study focuses on complementing existing LSH with a new 543 

synthesis dataset named the Global Streamflow characteristics, Hydrometeorology, and catchment 544 

Attributes for large sample river-centric studies (GSHA v1.0).  545 

To summarize, GSHA contributes the following aspects to the LSH development: 546 

1. It includes streamflow indices, hydrometeorological data, and surface characteristics data for 547 
21568 gauges compiled from 13 agencies worldwide, which represents one of the most 548 
comprehensive LSH by far. 549 

2. We incorporate multiple data sources to provide uncertainty estimates for each meteorological 550 
variable (including precipitation, 2 m air temperature, radiation, wind, and ET). The spatial 551 
patterns and the relationship between the uncertainty and the watershed characteristics that 552 
GSHA revealed may be helpful to identify inconsistencies among data-driven studies or biases 553 
for model parameter estimation studies using existing LSH.  554 

3. Dynamic data are provided for previously static data descriptors for land cover changes 555 
including urban, cropland and forest fractions, as well as reservoir storage change including 556 
storage capacity and degree of regulation. 557 

Although GSHA does not cover watersheds of <25km2 or the dynamics of cryosphere variables 558 

(e.g., glacier and permafrost) that become increasingly important in terrestrial hydrological changes, 559 

and the time spans for the dynamic descriptors of LULC are unable to cover the critical periods for 560 

the advanced and less-advanced economies due to the constraints with existing LULC data, GSHA 561 

is utilized to unravel the following insights: 562 

1. The uncertainty patterns vary between variables and geographical regions, indicating that the 563 

interpretation of model and analysis results need to consider inconsistencies of raw data, apart 564 

from looking into the methodologies and patterns themselves. 565 

2. Although most watersheds have remained natural or human managed throughout the GSHA 566 

time span, a considerable number of watersheds shifted between the two categories, which can 567 

be ascribed to urbanization, cropland increase, reservoir construction and ecological restoration 568 

such as returning farmland to natural states, and these can be clearly manifested using GSHA. 569 

3. Analysis with runoff coefficient reveals that while ~80% of gauges do not observe a 570 

statistically significant trend, a greater portion of gauges have experienced a declining RC trend 571 

than an increase trend. This pattern revealed by GSHA can be used to further study water 572 

availability issues in a changing climate. 573 
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As our knowledge on the above processes continues to improve, we expect that future versions 574 

of GSHA will be continuously updated. Finally, better hydrological data sharing is crucial to 575 

advance global change hydrology studies. 576 

Appendix 577 

A. Spatial patterns of GSHA meteorological variables 578 

Figures A1 & A2 show the spatial distributions of GSHA meteorological variables and selected 579 
streamflow indices. The spatial pattern derived from each individual data source is plotted separately. 580 

 581 
Figure A1 Spatial distribution of streamflow indices (row 1, m3/s), precipitation (row 2, mm/day), 2 m 582 
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air temperature (row 3, K), actual ET (row 4, mm/day), potential ET (row 5, mm/day). 583 

 584 

Figure A 2 Spatial distribution of longwave radiation (row 1, W/m2), shortwave radiation (row 2, W/m2), 585 
wind u- (row 3, m/s) and v- components (row 4, m/s) and the wind speed (row 5, m/s). 586 

 587 

B. Potential evapotranspiration uncertainty 588 

The spatial and numerical distributions of potential evapotranspiration (PET) uncertainties are 589 
illustrated in Figure B1 and Figure B2. PET uncertainty is high compared with other variables (see 590 
5.2 section). The majority of high PET uncertainty watersheds are in dry areas, but since it is 591 
calculated from meteorological variables, exceptions exist for palces including eastern Pacific coast, 592 
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where the climate is dry but PET uncertainty is low, and India, which is located in a wet climate 593 
zone but has high PET uncertainty. As demonstrated by Figure B3, PET uncertainty do not decrease 594 
with the increase of watershed area, probably because PET is calculated from various variables, and 595 
the calculation over large watersheds involves more uncertainties for individual grids. 596 

 597 
Figure B1 Spatial pattern of potential evapotranspiration (PET) uncertainty. 598 

 599 

 600 
Figure B2 Numerical distribution of PET uncertainty. 601 

 602 

 603 

Figure B3 Relationship of PET uncertainty to watershed area. 604 
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